Информационно-образовательный сайт учителя информатики и ИКТ     вход :: регистрация
   

Информатика и информационно-коммуникационные технологии в школе

 
   

   19.04.2024г.

Добрый день!  

Разделы сайта
 
  Материалы к урокам информатики в 7-9 по ФГОС. Новые презентации. Тесты.
 
  Знакомство с программирование, визуальное программирование.
 
  Планы, конспекты, презентации, методические находки, дидактический материал к уроку
 
  Настройка и использование школьной компьютерной сети
 
  Краткий теоретический материал, который можно применять на уроке...
 
  Разные полезности, программы, инструкции, советы...
 
  Как сохранить здоровье на уроках информатики
 
  Примерные экзаменационные билеты и ответы
 
  Программы для скачивания...
 
  Правила для пользователей портала
 
  Компьютерное тестирование знаний. Наш проект. Cправочное online руководство по программе
 
 
Сервисы сайта
все новости...
поиск по статьям сайта...
вопросы, обсуждения, решаем проблемы вместе ...
отзывы, замечания, предложения...
проверить свои знания, пройдя тесты в режиме online...
образовательные сайты, друзья портала...
для связи с администратором портала
 
Внимание! Опрос!

Есть ли в Вашей школе новые учебники информатики?

Да
Нет
Частично


результаты

____________________

  Полная или частичная перепечатка каким бы то ни было способом материалов данного сайта допускается только с письменного согласия автора.
  При цитировании или ином использовании материалов ссылка на сайт www.klyaksa.net обязательна.

____________________
 
Наши проекты:

MyTestX - лего и удобно

 
 
Улыбнитесь
Клиент:
-Что-бы купить у вас системный блок, нужно приходить со своим монитором?
-Вам - нужно!

Реклама:


 

Rambler's Top100

Рейтинг@Mail.ru
Яндекс цитирования
 
 

Начало » Экзамен по информатике » Ответы 11 класс » [Экзамен по информатике][Билет №4][Представление и кодирование информации]

Представление и кодирование информации.

Язык как знаковая система

Для обмена информацией с другими людьми человек использует естественные языки (русский, английский, китайский и др.), то есть информация представляется с помощью естественных языков. В основе языка лежит алфавит, то есть набор символов (знаков), которые человек различает по их начертанию. В основе русского языка лежит кириллица, содержащая 33 знака, английский язык использует латиницу (26 знаков), китайский язык использует алфавит из десятков тысяч знаков (иероглифов).

Последовательности символов алфавита в соответствии с правилами грамматики образуют основные объекты языка — слова. Правила, согласно которым образуются предложения из слов данного языка, называются синтаксисом. Необходимо отметить, что в естественных языках грамматика и синтаксис языка формулируются с помощью большого количества правил, из которых существуют исключения, так как такие правила складывались исторически.

Наряду с естественными языками были разработаны формальные языки (системы счисления, язык алгебры, языки программирования и др.). Основное отличие формальных языков от естественных состоит в наличии строгих правил грамматики и синтаксиса.

Например, системы счисления можно рассматривать как формальные языки, имеющие алфавит (цифры) и позволяющие не только именовать и записывать объекты (числа), но и выполнять над ними арифметические операции по строго определенным правилам.

Некоторые языки используют в качестве знаков не буквы и цифры, а другие символы, например химические формулы, ноты, изображения элементов электрических или логических схем, дорожные знаки, точки и тире (код азбуки Морзе) и др.

Знаки могут -иметь различную физическую природу. Например, для представления информации с использованием языка в письменной форме используются знаки, которые являются изображениями на бумаге или других носителях, в устной речи в качестве знаков языка используются различные звуки (фонемы), а при обработке текста на компьютере знаки представляются в форме последовательностей электрических импульсов (компьютерных кодов).

Представление информации в живых организмах

Человек воспринимает информацию об окружающем мире с помощью органов чувств (зрения, слуха, обоняния, осязания и вкуса). Чувствительные нервные окончания органов чувств (рецепторы) воспринимают воздействие (например, на глазном дне колбочки и палочки реагируют на воздействие световых лучей) и передают его нейронам (нервным клеткам), цепи которых составляют нервную систему.

Нейрон может находиться в одном из двух состояний: невозбужденном и возбужденном. Возбужденный нейрон генерирует электрический импульс, который передается по нервной системе.

Состояния нейрона (нет импульса, есть импульс) можно рассматривать как знаки некоторого алфавита нервной системы, с помощью которого происходит передача информации.

Генетическая информация во многом определяет строение и развитие живых организмов и передается по наследству.

Хранится генетическая информация в клетках организмов в структуре молекул ДНК. Молекула ДНК состоит из двух скрученных друг с другом в спираль цепей, построенных из четырех нуклеотидов: A, G, Т и С, которые образуют генетический алфавит.

Молекула ДНК человека включает в себя около 3 миллиардов пар нуклеотидов и поэтому в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и пр.

Кодирование информации

Представление информации происходит в различных формах в процессе восприятия окружающей среды живыми организмами и человеком, в процессах обмена информацией между человеком и человеком, человеком и компьютером, компьютером и компьютером и так далее. Преобразование информации из одной формы представления (знаковой системы) в другую называется кодированием.

Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем. 

В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре происходит кодирование знака, то есть преобразование его в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс - - декодирование, когда из компьютерного кода знак преобразуется в его графическое изображение.

Двоичное кодирование информации

В компьютере для представления информации используется двоичное кодирование, так как удалось создать надежно работающие технические устройства, которые могут со стопроцентной надежностью сохранять и распознавать не более двух различных состояний (цифр):

  • электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;

  • участок поверхности магнитного носителя информации (намагничен/размагничен);

  • участок поверхности лазерного диска (отражает/не отражает);

  • триггер (см. п. 3.7.3), может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.

Все виды информации в компьютере кодируются на машинном языке, в виде логических последовательностей нулей и единиц.

Цифры двоичного кода можно рассматривать как два равновероятных состояния (события). При записи двоичной цифры реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, она несет количество информации, равное 1 биту.

Даже сама единица измерения количества информации бит (bit) получила свое название от английского словосочетания BInary digiT (двоичная цифра).

Важно, что каждая цифра машинного двоичного кода несет информацию в 1 бит. Таким образом, две цифры несут информацию в 2 бита, три цифры — в 3 бита и так далее. Количество информации в битах равно количеству цифр двоичного машинного кода.

Представление числовой информации с помощью систем счисления

Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хорошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.

Римская непозиционная система счисления. Самой распространенной из непозиционных систем счисления является римская. В качестве цифр в ней используются: I (1), V (5), X (10), L (50), С (100), D (500), М (1000).
Значение цифры не зависит от ее положения в числе. Например, в числе XXX (30) цифра X встречается трижды и в каждом случае обозначает одну и ту же величину - число 10, три числа по 10 в сумме дают 30.

Позиционные системы счисления. Первая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричной, то есть в ней использовалось шестьдесят цифр! Интересно, что до сих пор при измерении времени мы используем основание, равное 60 (в 1 минуте содержится 60 секунд, а в 1 часе - 60 минут).

В XIX веке довольно широкое распространение получила двенадцатеричная система счисления. До сих пор мы часто употребляем дюжину (число 12): в сутках две дюжины часов, круг содержит тридцать дюжин градусов и так далее.

В позиционных системах счисления количественное значение цифры зависит от ее позиции в числе.
Наиболее распространенными в настоящее время позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная. Каждая позиционная система имеет определенный алфавит цифр и основание.

Двоичное кодирование текстовой информации

Начиная с конца 60-х годов, компьютеры все больше стали использоваться для обработки текстовой информации и в настоящее время большая часть персональных компьютеров в мире (и наибольшее время) занято обработкой именно текстовой информации.

Традиционно для кодирования одного символа используется количество информации, равное 1 байту, то есть  I = 1 байт = 8 битов.

Для кодирования одного символа требуется 1 байт информации.

Если рассматривать символы как возможные события, то можно вычислить, какое количество различных символов можно закодировать:
N = 2I= 28 = 256.

Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и строчные буквы русского и латинского алфавита, цифры, знаки, графические символы и пр.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертаниям, а компьютер - по их кодам.

При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение символа преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу с символом, и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код символа). Код символа хранится в оперативной памяти компьютера, где занимает один байт.

В процессе вывода символа на экран компьютера производится обратный процесс — декодирование, то есть преобразование кода символа в его изображение.

Важно, что присвоение символу конкретного кода — это вопрос соглашения, которое фиксируется в кодовой таблице. Первые 33 кода (с 0 по 32) соответствуют не символам, а операциям (перевод строки, ввод пробела и так далее).
Коды с 33 по 127 являются интернациональными и соответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.
Коды с 128 по 255 являются национальными, то есть в национальных кодировках одному и тому же коду соответствуют различные символы. 

К сожалению, в настоящее время существуют пять различных кодовых таблиц для русских букв (КОИ8, СР1251, СР866, Mac, ISO), поэтому тексты, созданные в одной кодировке, не будут правильно отображаться в другой.

В настоящее время широкое распространение получил новый международный стандарт Unicode, который отводит на каждый символ не один байт, а два, поэтому с его помощью можно закодировать не 256 символов, а N = 216 =  65536 различных символов.

Аналоговый и дискретный способы представления изображений и звука

Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вкусовых и обонятельных). Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий и так далее), а звуковые  - зафиксированы на пластинках, магнитных лентах, лазерных дисках и так далее.

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Примером аналогового представления графической информации может служить, например, живописное полотно, цвет которого изменяется непрерывно, а дискретного — изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета. Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).


Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, то есть присвоение каждому элементу конкретного значения в форме кода.

Дискретизация — это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов. 

Двоичное кодирование графической информации

 В процессе кодирования изображения производится его пространственная дискретизация. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол). Изображение разбивается на отдельные маленькие фрагменты (точки), причем каждому фрагменту присваивается значение его цвета, то есть код цвета (красный, зеленый, синий и так далее).

Качество кодирования изображения зависит от двух параметров.
 Во-первых, качество кодирования изображения тем выше, чем меньше размер точки и соответственно большее количество точек составляет изображение.
Во-вторых, чем большее количество цветов, то есть большее количество возможных состояний точки изображения, используется, тем более качественно кодируется изображение (каждая точка несет большее количество информации). Совокупность используемых в наборе цветов образует палитру цветов.

Графическая информация на экране монитора представляется в виде растрового изображения, которое формируется из определенного количества строк, которые в свою очередь содержат определенное количество точек (пикселей).

Качество изображения определяется разрешающей способностью монитора, т.е. количеством точек, из которых оно складывается. Чем больше разрешающая способность, то есть чем больше количество строк растра и точек в строке, тем выше качество изображения. В современных персональных компьютерах обычно используются три основные разрешающие способности экрана: 800х600, 1024х768 и 1280х1024 точки.

Рассмотрим формирование на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего 480 000 точек). В простейшем случае (черно-белое изображение без градаций серого цвета) каждая точка экрана может иметь одно из двух состояний - «черная» или «белая», то есть для хранения ее состояния необходим 1 бит.

Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки, хранящимся в видеопамяти.. Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемым для кодирования цвета точки. Наиболее распространенными значениями глубины цвета являются 8, 16, 24 или 32 бита.

Цветное изображение на экране монитора формируется за счет смешивания трех базовых цветов: красного, зеленого и синего. Такая цветовая модель называется RGB-моделью по первым буквам английских названий цветов (Red, Green, Blue).

Двоичное кодирование звуковой информации

Временная дискретизация звука. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды.

При двоичном кодировании непрерывного звукового сигнала он заменяется последовательностью дискретных уровней сигнала. Качество кодирования зависит от количества измерений уровня сигнала в единицу времени, то есть частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

Хранение информации

Информация, закодированная с помощью естественных и формальных языков, а также информация в форме зрительных и звуковых образов хранится в памяти человека. Однако для долговременного хранения информации, ее накопления и передачи из поколения в поколение используются носители информации.

Материальная природа носителей информации может быть различной: молекулы ДНК, которые хранят генетическую информацию; бумага, на которой хранятся тексты и изображения; магнитная лента, на которой хранится звуковая информация; фото- и кинопленки, на которых хранится графическая информация; микросхемы памяти, магнитные и лазерные диски, на которых хранятся программы и данные в компьютере, и так далее.

По оценкам специалистов, объем информации, фиксируемой на различных носителях, превышает один эксабайт в год (1018 байт/год). Примерно 80% всей этой информации хранится в цифровой форме на магнитных и оптических носителях и только 20% — на аналоговых носителях (бумага, магнитные ленты, фото- и кинопленки).

Носители информации характеризуются информационной емкостью, то есть количеством информации, которое они могут хранить. Наиболее информационно емкими являются молекулы ДНК, которые имеют очень малый размер и плотно упакованы. Это позволяет хранить огромное количество информации (до 1021 битов в 1 см3), что дает возможность организму развиваться из одной-единственной клетки, содержащей всю необходимую генетическую информацию.

Современные микросхемы памяти позволяют хранить в 1 см3 до 1010 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден. На каждом гибком магнитном диске может храниться книга объемом около 600 страниц, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг.

Большое значение имеет надежность и долговременность хранения информации. Большую устойчивость к возможным повреждениям имеют молекулы ДНК, так как существует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления.

Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых приводит к потери информации только на поврежденном участке. Поврежденная часть фотографии не лишает возможности видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее.

Цифровые носители гораздо более чувствительны к повреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности считать файл, то есть к потере большого объема данных. Именно поэтому необходимо соблюдать правила эксплуатации и хранения цифровых носителей информации.

Наиболее долговременным носителем информации является молекула ДНК, которая в течение десятков тысяч лет (человек) и миллионов лет (некоторые живые организмы), сохраняет генетическую информацию данного вида.

Аналоговые носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские глиняные таблички), сотен лет (бумага) и десятков лет (магнитные ленты, фото- и кинопленки).

Цифровые носители появились сравнительно недавно и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при правильном хранении оптические носители способны хранить информацию сотни лет, а магнитные — десятки лет.

 

 

 

 

 

 

 

 

 

 

[Добавить в избранное]

 
Рекомендуем:

MyTest

Компьютерное тестирование знаний учащихся, сертификация и аттестация сотрудников.
Деcять типов заданий, локальное и сетевое тестирование...
 
Узнать больше и скачать программу MyTestXPro...
 
Обсудить на форуме и принять участие в создании банка тестов...
 
Группа ВКонтакте:
vk.com/MyTestXPro


 
Реклама:
 
 

 
Реклама:
 
 


↑    

Дизайн, программирование и идея сайта Клякс@.net -bas- © 2004-2024г.

    ↑